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Affine Diffusions with Non-Canonical State Space

PETER SPREIJ AND ENNO VEERMAN

Korteweg-de Vries Institute of Mathematics, University of Amsterdam,
Amsterdam, The Netherlands

Multidimensional affine diffusions have been studied in detail for the case of a
canonical state space. We present results for general state spaces and provide
a complete characterization of all possible affine diffusions with polyhedral and
quadratic state space. We give necessary and sufficient conditions on the behavior of
drift and diffusion on the boundary of the state space in order to obtain invariance
and to prove strong existence and uniqueness.

Keywords Affine diffusions; Polyhedral state space; Quadratic state space;
Stochastic invariance; Strong solutions.
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1. Introduction

Affine diffusions, introduced in the pioneering paper [10] by Duffie and Kan, are
widely used in finance for modelling the term structure of interest rates. Their main
attraction lies in the fact that they imply closed form expressions for bond prices.
Affine diffusions are p-dimensional Markov processes that solve an affine stochastic
differential equation (SDE) driven by a Brownian motion, i.e., an SDE with a drift
��x� and diffusion matrix ��x�, both affine functions in the argument x. There are
three important issues in the theory of affine diffusions, to wit

• stochastic invariance of a subset � of �p, the state space,
• the existence and uniqueness of strong solutions to the SDE with values in � ,
• the validity of the so-called affine transform formula for exponential moments.

Most of the theory that has recently been developed, concerns affine diffusions
with a canonical state space �m

≥0 ×�p−m, henceforth referred to as the state space
in standard canonical form, due to its tractable appearance which might ease the
verification of possible technical conditions. The notion of a canonical state space
has been introduced in [7]. Worth mentioning is the seminal paper [9] by Duffie,
Filipović, and Schachermayer, who provide a complete characterization of (regular)
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606 Spreij and Veerman

affine processes, allowing jumps as well, under the assumption of a standard
canonical state space. Regarding the three issues mentioned above, for affine SDEs
with canonical state space it is relatively easy to establish strong existence and
uniqueness, as well as to derive conditions for invariance, see, for example, [7, 11].
Moreover, until recently, the affine transform formula has only been fully verified
for affine diffusions with a standard canonical state space, for [11].

This article together with a companion paper [20] contribute to the theory of
affine diffusions with a non-canonical state space. We will characterize all affine
diffusions, focussing our attention on polyhedrons (of which the standard canonical
state space is a special case) as well as quadratic state spaces (those of which the
boundary is characterized by a quadratic function), though more is possible. For
example, the matrix-valued affine processes and related Wishart processes treated in
[5, 13] have the cone of positive semi-definite matrices as their state space. Worth
mentioning is the Ph.D. thesis of Cuchiero [4], where affine processes are considered
on general symmetric cones. Our results extend the classification of [12] for the
two-dimensional case to higher dimensions. In [12] it is shown that besides an
intersection of halfspaces, also a parabolic state space is possible. We will see that in
higher dimensions the quadratic state spaces are not limited to the parabolic ones;
there exist also affine diffusions whose state space is a Lorentz cone.

This article concerns the first two of three mentioned issues for affine diffusions
that live on a non-canonical state space. Results on the third one are presented in
the companion paper [20], where we extend the results in [11] on the validity of the
affine transform formula for canonical to general state spaces. Returning to the first
issue, in the current paper we derive conditions for the drift and diffusion matrix
on the boundary of � to ensure stochastic invariance for both the polyhedral and
the quadratic state space. For the standard canonical state space these conditions
are often called admissibility conditions, see [7, 9]. The second issue, existence of a
unique strong solution to an affine SDE, is in general not straightforward, as the
square root of an affine matrix valued function � is not locally Lipschitz continuous
for singular �. This article follows two approaches to solve this problem.

The first one is by invoking a result by Yamada and Watanabe [23, Theorem 1],
as is done in [7, 11]. This result is essentially only applicable for the standard
canonical state space. Under invariance conditions though, we prove that a general
polyhedral state space can be transformed in some kind of canonical form, not
necessarily the standard one, for which the result by Yamada and Watanabe does
apply. For a parabolic state space unique strong solutions can be similarly obtained
by application of an appropriate modification of this result.

The second way to obtain unique strong solutions is to impose conditions
for invariance of �x ∈ �p � ��x� strictly positive definite� (also denoted by �� > 0��,
an approach followed in [10] for affine diffusions with a diagonalizable diffusion
matrix and in [18] for matrix-valued diffusions. Strong existence and uniqueness
is guaranteed, as the unique positive definite square root of � is locally Lipschitz
continuous on �� > 0�. In this article we derive invariance conditions for general
state spaces, following the arguments in [18]. This enables us to obtain existence and
uniqueness of affine diffusions whose state space is a Lorentz cone.

As a side note, we mention that invariance of �� > 0� is also important for
applications. For example, in an affine term structure model one often desires an
affine structure of the underlying SDE under both the risk-neutral and the physical
measure. For this purpose, the invariance conditions for �� > 0� are relevant in view
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of [2, 8]. Therefore, we will provide these conditions not only for the Lorentz cone
but also for the polyhedral and parabolic state space.

The remainder of this article is organized as follows. After introducing
in Section 2 some notation and defining affine SDEs and diffusions more
carefully, as well as presenting a more detailed description of our aims, we
discuss in Section 3 stochastic invariance of the state space. Necessary conditions
(admissibility conditions) on the behavior of the drift and the diffusion matrix on
the boundary of a general closed convex state space are derived, whereas sufficient
conditions are obtained for particular cases. In this section we also provide sufficient
conditions for stochastic invariance of an open state space.

The invariance conditions derived in Section 3 are used in Section 4 and
Section 5 to characterize all affine diffusions with polyhedral respectively quadratic
state space. For the former we also give sufficient conditions, extending those known
from the literature [3, 7, 11], under which the diffusion matrix can be diagonalized.
In particular, we show that the classical model of [10] can be transformed into
the canonical form of [7]. The results from convex analysis that we use in
Section 4 are stated and proved in Appendix A. In Section 5, we show that for
quadratic state spaces there are essentially only two types of state spaces possible, a
(multidimensional) parabola and the Lorentz cone. For each of these types we are
able to give a full characterization of the possible diffusion matrices.

2. Definitions, Approach, and Notation

Let p ∈ �. We are given a p-dimensional stochastic differential equation

dXt = ��Xt�dt + ��Xt�dWt	 (2.1)

for continuous functions � � �p → �p and � � �p → �p×p that satisfy the linear
growth condition

���x�� + ���x�� ≤ M�1+ �x��	 for all x ∈ �p	 some M > 0
 (2.2)

By Theorems IV.2.3 and IV.2.4 in [15], for all initial conditions x0 ∈ �p there exists
a weak solution �X	W� to (2.1), that is, there exists a filtered probability space
��	� 	 ��t�	�� satisfying the usual conditions, with a p-dimensional �t-Brownian
motion W and an adapted p-dimensional stochastic process X, such that X0 = x0
a.s. and (2.1) holds. Let us also recall the result from Yamada and Watanabe
[16, Theorem 21.14] that (2.1) has a unique strong solution if and only if weak
existence and pathwise uniqueness holds.

We use the following definitions.

Definition 2.1. We call a measurable set � ⊂ �p stochastically invariant, if for all
x0 ∈ � , there exists a weak solution �X	W� to (2.1) with initial condition x0 such
that Xt ∈ � almost surely, for all t ≥ 0.

Definition 2.2. The SDE (2.1) is called an affine SDE with state space � ⊂ �p if

(1) it has a unique strong solution;
(2) � is stochastically invariant;
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(3) the drift � and diffusion matrix � = ��� are affine in x on � , i.e.

��x� = ax + b	 ��x� = A0 +
p∑
i=1

Aixi	 for all x ∈ �	 (2.3)

for some a ∈ �p×p, b ∈ �p, symmetric Ai ∈ �p×p.

The unique strong solution to an affine SDE is called an affine diffusion, which
corresponds to the definition in [11] in view of [20, Theorem 3.7].

Throughout the next sections we will address the following topics. Given a state
space � , we determine all affine functions � � �p → �p and � � �p×p → �p such
that there exists a continuous square root � of � on � for which (2.1) is an affine
SDE. To that end, the following three aspects have to be taken into consideration.

• First, it is necessary that � ⊂ �� ≥ 0�, since ��x� = ��x���x�� for x ∈ � .
• Second, for stochastic invariance, one has to impose conditions on � and �
on the boundary of � , in order to prevent the solution X from leaving the
state space � .

• Third, one has to construct a square root � such that (2.1) admits a unique
strong solution that stays in � . Remarkably, for the polyhedral and parabolic
state space we consider, the conditions for stochastic invariance enable the
construction of such a square root �, see Theorems 4.3 and 5.7. For the
Lorentz cone state space we obtain unique strong solutions by imposing
conditions for invariance of �� > 0�, see Theorem 5.16.

Although obvious, it is worth noting that if X is an affine diffusion with drift
��x�, diffusion matrix ��x� and state space � , then LX + � is an affine diffusion with
drift L��L−1�x − ���, diffusion matrix L��L−1�x − ���L� and state space L� + �, for
non singular L ∈ �p×p, � ∈ �p. Therefore, for the tasks as outlined above, it suffices
to characterize all affine diffusions where the state space is in a certain “canonical”
form (not to be confused with the standard canonical form), thereby obtaining all
remaining diffusions by affine transformations.

Remark 2.3. The distribution of X does not change with different choices of the
square root � (as long as X stays in � for these choices), since it is determined
by the generator, which depends on � only through ���. Note, however, that if
strong existence and uniqueness holds for one particular choice of �, it does not
automatically hold for other choices. For instance take ��x� = 1 in � and consider
the one-dimensional SDE dXt = ��Xt�dWt with ��� = �. Existence and uniqueness
of a strong solution holds when we take ��x� = 1, while one only has a weak
solution for the choice ��x� = sgn�x+�, see [17, Example 5.3.5].

Matrix notation. The following notation regarding matrices and vectors is used
throughout. Let p	 q ∈ �, P = �1	 
 
 
 	 p�, Q = �1	 
 
 
 	 q�, A ∈ �p×q, I ⊂ P, J ⊂ Q.
Write I = �i1	 
 
 
 	 i#I �, J = �j1	 
 
 
 	 j#J �, with i1 ≤ i2 ≤ · · · ≤ i#I and j1 ≤ j2 ≤ · · · ≤
j#J . Then AIJ denotes the �#I × #J�-matrix with elements �AIJ �kl = Aikjl

. If #I = 1,
say I = �i�, we write AiJ instead. If J = Q then we write AI instead. In particular,
Ai denotes the ith row of A. The jth column is denoted by Aj and the transpose of
A is denoted by A�. The above notation is also used for matrix-valued functions 
,
for example, 
��x� stands for �
�x���.
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For a1	 
 
 
 	 ap ∈ � we write diag�a1	 
 
 
 	 ap� for the p-dimensional diagonal
matrix D with diagonal elements Dii = ai, i ∈ P. We also write diag�a� instead,
where a denotes the vector with elements ai, sometimes explicitly denoted by a =
vec�a1	 
 
 
 	 ap�. For a vector v we write �v� for the vector with elements �vi� and
analogously

√�v� denotes the vector with elements
√�vi�. The identity matrix is

written as I. We write �A� for the linear span of the row vectors of A. If A and B are
two matrices with the same column dimension, then A⊥B stands for �A�⊥�B�, i.e.
AiB

�
j = 0 for all i and j. The unique symmetric positive semi-definite square root of

a positive semi-definite matrix A is denoted by A1/2. For a square matrix A we write
�A� for �AA��1/2. We will often make use of the fact that the matrix-valued function
A 
→ �A�1/2 is continuous, which is a consequence of [1, Theorem X.1.1].

3. Stochastic Invariance

In this section, we obtain necessary and in some cases sufficient boundary conditions
for stochastic invariance, see Definition 2.1. We first consider stochastic invariance
of a closed convex set � ⊂ �p, for which we make use of the fact that it can be
written as an intersection of halfspaces, that is,

� =⋂
i∈I
�ui ≥ 0�	 (3.1)

with I some index set and ui � �
p → � � x 
→ �ix + �i, for some �i ∈ �1×p, �i ∈ �.

We denote the ith boundary segment � ∩ �ui = 0� of �� with ��i. The following
proposition is partly proved in [11, Lemma B.1]. We give a more intuitive proof,
involving an appropriate change of measure.

Proposition 3.1. Let � ⊂ �p be a closed convex set given by (3.1) and assume � is
stochastically invariant. Then necessarily it holds that

∀i ∈ I	 ∀x ∈ ��i � �i��x� = 0 (3.2)

∀i ∈ I	 ∀x ∈ ��i � �i��x� ≥ 0
 (3.3)

Proof. We give a proof by contradiction. Suppose there is an i ∈ I and x0 ∈ ��i

such that (3.2) or (3.3) does not hold. Then there exists c ∈ � such that �

defined as ��x� = �i��x�+ c�i��x���x�
���i is negative in x0. Let �X	W� be a weak

solution to (2.1) with initial condition x0 on some filtered probability space
��	� 	 ��t�	��. There exists a stopping time �1 > 0 such that L = ��c�i��X�1�0	�1� ·
W� is a martingale. Take T > 0 arbitrarily, then we can change � into an equivalent
probability measure � on �T by d� = LTd�. By Girsanov’s Theorem, W� defined
by dW�

t = dWt − c��Xt�
���i 1�0	�1��t�dt, is a Brownian motion under � on �0	 T�.

Hence, X solves an SDE under � for t ∈ �0	 T�, namely

dXt = ���Xt�+ c��Xt���Xt�
���i 1�0	�1��t��dt + ��Xt�dW

�
t 


Let �2 > 0 be a stopping time such that ���X� ·W��t∧�2 is a �-martingale and
��Xt� < 0 for t ∈ �0	 �2�, �-a.s. (this is possible since ��X0� = ��x0� < 0 and t 
→ Xt
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and � are continuous, �-a.s., whence �-a.s.). Write � = �1 ∧ �2. Then it holds that
� > 0, �-a.s. and, therefore,

E�ui�XT∧�� = �i + �iE�XT∧� = ui�x0�+ E�

∫ T∧�

0
��Xt�dt < 0


This implies ��∀t ∈ �0	 T� � ui�Xt� ≥ 0� < 1 and by equivalence of � and � also
��∀t ∈ �0	 T� � ui�Xt� ≥ 0� < 1, which contradicts the stochastic invariance of � . �

If � ⊂ �p given by (3.1) is a convex polyhedron, then I is finite, say I =
�1	 
 
 
 	 q�, for some q ∈ �. We write � ∈ �q×p for the matrix with row vectors �i,
� ∈ �q for the vector with elements �i and u � �

p → �q � x 
→ �x + �. The necessary
conditions obtained in Proposition 3.1 are sufficient when � is a convex polyhedron
congruent to the canonical space �m

≥0 ×�p−m.

Proposition 3.2. Let � ⊂ �p be a convex polyhedron given by (3.1) with I =
�1	 
 
 
 	 q� for some q ∈ � and suppose � has full row-rank. Then � is stochastically
invariant if and only if (3.2) and (3.3) hold.

Proof. This follows by [21, Remark 3.6], since � is congruent to the standard
canonical state space, as � has full row-rank. �

Proposition 3.2 has the following corollary, which will turn out to be the
building block for proving stochastic invariance for affine diffusions with general
polyhedral state space, as considered in Section 4.

Corollary 3.3. Let a ∈ �p×p, b ∈ �p, c ∈ �p
≥0 and suppose the drift of (2.1) is

given by

��x� = ax + b	 (3.4)

and the diffusion coefficient by ��x� = diag�
√
c1�x1�	 
 
 
 	

√
cp�xp��, for all x ∈ �p. Then

�p
≥0 is stochastically invariant if and only if

∀i ∈ P	 ∀j ∈ P\�i� � aij ≥ 0 and bi ≥ 0
 (3.5)

To obtain conditions for stochastic invariance of a quadratic state space, we
note that if � ⊂ �p is a closed convex set with �� ⊂ �� = 0� for some C1-function
� � �p → �, then we can take (3.1) with I = �� , �i = ���i� and �i = −�ii, for i ∈ I ,
where we write �� for the gradient of � (written as a row vector). The necessary
conditions for invariance (3.2) and (3.3) in this case read

∀x ∈ �� � ���x���x� = 0

∀x ∈ �� � ���x���x� ≥ 0


The next proposition gives necessary and sufficient conditions for a particular case.
We write �2� = ���� for the Hessian of a C2-function �.
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Proposition 3.4. Let � � �p → � � x 
→ x1 − f�xP\�1�� for some C2-function f �
�p−1 → �. Then � = �� ≥ 0� is invariant for (2.1) if and only if

���x���x� = 0 (3.6)

���x���x� ≥ −1
2
tr��2��x���x���x���	 (3.7)

for all x ∈ �� = �� = 0�.

Proof. Let �X	W� be a weak solution to (2.1) on some filtered probability space
��	� 	 ��t�	�� with initial condition x0 ∈ � . It holds that Xt ∈ � if and only if
���Xt�	 XP\�1�	t� ∈ �≥0 ×�p−1. Itô’s formula gives

d��Xt� = ���Xt�dXt +
1
2
tr��2��Xt�d�Xt��

=
(
���Xt���Xt�+

1
2
tr��2��Xt���Xt���Xt�

��
)
dt

+ ���x���Xt�dWt


Applying Proposition 3.2 gives the result. �

Note that if � is convex in Proposition 3.4, equivalently f is a convex function,
then �2f is positive semi-definite on its domain, when �2� is negative semi-definite
and it follows that

tr��2��Xt���x���x�
�� = tr���x���2��x���x�� ≤ 0	 for all x ∈ �p


Thus, condition (3.7) is stronger than (3.2), whence (3.2) and (3.3) are in general not
sufficient for stochastic invariance. For more results we refer to [6, 19].

We conclude this section by giving sufficient conditions for stochastic invariance
of an open set. The idea behind the proof of the following result is taken from [18].

Proposition 3.5. Let � � �p → � be a C2-function and suppose �� is a connected
component (i.e. maximal connected subset) of �� > 0�. Then �� is invariant for (2.1)
if there exists an open neighborhood O of �� such that

���x���x� ≥ −1
2
tr��2��x���x��+ 1

2
��x�−1���x���x�����x���	 (3.8)

for all x in O ∩ ��, where we write � = ���.

Proof. Let �X	W� be a weak solution to (2.1) on some filtered probability space
��	� 	 ��t�	�� with initial condition x0 ∈ ��. By Itô’s formula it holds for t < �0 �=
inf�s ≥ 0 � ��Xs� = 0� that

d log��Xt� = ��Xt�
−1d��Xt�−

1
2
��Xt�

−2d���X��t
= ��Xt�

−1�f�Xt�dt + ��Xt�dWt�	
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where

f�x� = ���x���x�+ 1
2
�tr��2��x���x��−��x�−1���x���x�����x����


Suppose A �= ��0 < �� has positive probability. Since X does not explode, it holds
for each � ∈ A that there exists � > 0 such that Xt��� ∈ O ∩ �� for �0���− � < t <
�0���, whence f�Xt���� ≥ 0. Therefore,

∫ t

0 ��Xs�
−1f�Xs�ds does not tend to −� on

A for t ↑ �0. This yields

lim
t↑�0

∫ t

0
��Xs�

−1��Xs�dWs = −�	

which is impossible, by the arguments of [18, Proposition 3.4]. �

Remark 3.6. Note that (3.8) implies (3.6) and is stronger than (3.7), as � = ��� is
positive semi-definite.

Proposition 3.5 yields tractable conditions for stochastic invariance of an open
set in case of an affine SDE.

Proposition 3.7. Consider the situation of Proposition 3.5 and suppose � and � �= ���

are affine functions given by (2.3). Then �� is invariant for (2.1) if

���x���x� = ��x�v�	 for some constant v ∈ �p	 (3.9)

���x����x�− 1
2

p∑
i=1

�Ai�i� ≥ 0	 for all x ∈ �	 (3.10)

where �Ai�i denotes the ith column of the matrix Ai.

Proof. In view of Proposition 3.5 it suffices to show that

tr��2��x���x��−��x�−1���x���x�����x��� = −���x�
p∑
i=1

�Ai�i	

under the assumption that ���x���x� = ��x�v�, for some constant vector v ∈ �p.
Differentiating the right, respectively, the left-hand side of the latter and applying
the product rule yields

����x�v� = ������x���x�� = �2��x���x�+ ���x�����x�	

where ���x�����x� is short-hand notation for the matrix with row vectors
���x� �

�xi
��x�. Hence,

tr��2��x���x�� = ���x�v− tr����x�����x��


The result follows, since ���x�v = ��x�−1���x���x�����x��� and

tr����x�����x�� =
p∑
i=1

���x�
��i�x�

�xi
= ���x�

p∑
i=1

�Ai�i

�
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4. Polyhedral State Space

4.1. General Diffusion Matrix

Throughout this section, we assume � is a polyhedron given by

� =
q⋂
i=1

�ui ≥ 0�	 (4.1)

for some affine function u � �q → �p � x 
→ �x + �, � ∈ �q×p, � ∈ �q, some q ∈ �.
We write Q = �1	 
 
 
 	 q� and assume Q is minimal in the sense that

⋂
i∈Q′�ui ≥ 0� �=

� for all Q′ ⊂ Q with Q′ �= Q. In addition we assume � is of the form (3.4) and we
are given an affine function � by

� � �p → �p×p � x 
→ A0 +
p∑
i=1

Aixi	 (4.2)

for some symmetric Ai ∈ �p×p and we assume

∅ �= �� ⊂ � ⊂ �x ∈ �p � ��x� ≥ 0� =� �
 (4.3)

We will often make use of the fact that for a symmetric matrix S and vector v it
holds that Sv = 0 is equivalent with v�Sv = 0. In particular if � = ��� on � , then
(3.2) is equivalent to

∀i ∈ I	 ∀x ∈ ��i � �i��x� = 0


In Section 3, we have derived necessary boundary conditions on � and � to have
� stochastically invariant. We show in this subsection that for a polyhedral state
space, these conditions are also sufficient for the existence of a square root � of �
on � such that (2.1) is an affine SDE. In the next proposition we prove that � can
be transformed in a block-diagonal form, which we use in the proof of Theorem 4.3
to construct the square root �. The proposition improves upon the results given in
the appendix of [10] and generalizes [11, Lemma 7.1].

Proposition 4.1. Let � ⊂ �p be a convex polyhedron given by (4.1) and satisfying
(4.3) and let � be given by (4.2). Assume

∀i ∈ Q	 ∀x ∈ ��i � �i��x� = 0
 (4.4)

Then there exists a non singular L ∈ �p×p and a vector � ∈ �p such that

L��L−1�x − ���L� =
(
diag�xM	 0N � 0

0 ��xM∪N �

)
	 (4.5)

for some index sets M = �1	 
 
 
 	 m�, N = �m+ 1	 
 
 
 	 m+ n� and affine function � .
In addition, we have

L� + � = �m
≥0 ×	 ×�p−m−n	 (4.6)

for some convex polyhedron 	 = ⋂q−m
i=1 �ũi ≥ 0� ⊂ �n

≥0 with ũi�x� = xi for i ≤ n.
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Proof. We divide the proof into a couple of steps.

Step 1. There exists B ∈ �q×p such that for i ∈ Q it holds that

�i��x� = Biui�x�	 (4.7)

Bi�
�
i > 0	 if Bi �= 0 (4.8)

Bi�
�
j = 0	 for j ∈ Q\�i�
 (4.9)

This is shown as follows. Fix i ∈ Q. By (4.4) and Proposition A.4, there exists Bi ∈
�1×p such that �i�

j�x� = Bijui�x� for j ∈ P. By assumption there exists x0 ∈ ��. It
holds that ui�x0� > 0, so we can write

Bi = ui�x0�
−1�i��x0�
 (4.10)

By positive semi-definiteness of ��x0�, it holds that Bi�
�
i ≥ 0. We have Bi�

�
i = 0 if

and only if �i��x0� = 0, that is, Bi = 0. This yields (4.8). Moreover, if j ∈ Q\�i�, then
by symmetry of � it holds that

Bi�
�
j ui�x� = �i��x��

�
j = �j��x��

�
i = Bj�

�
i uj�x�


This implies Bi�
�
j = 0, since Q is minimal.

Step 2. It holds that

rank �M = rankBM = m (4.11)

�1×p = ��M�⊕ �BM�
⊥	 (4.12)

where

M = �i ∈ Q � Bi �= 0�
 (4.13)

Indeed, by (4.9) we have

BM�
�
M = diag�B1�

�
1 	 
 
 
 	 Bm�

�
m�	 (4.14)

which has full rank m by (4.8). This implies (4.11) as well as ��M� ∩ �BM�
⊥ = �0�,

which yields (4.12).

Step 3. It holds that

�BM�
⊥ = ��N �⊕ ���	 (4.15)

��Q\M� = ��N �	 (4.16)

where N ⊂ Q\M is such that �M∪N has full rank, rank �M∪N = rank �, for some � ∈
��p−m−n�×p, with n = #N . The first equality follows immediately from (4.11) and
(4.12), while the second holds since ��Q\M� ⊂ �BM�

⊥ by (4.9) and ��M∪N � = ���.
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Step 4. Permute indices such that M = �1	 
 
 
 	 m�, N = �m+ 1	 
 
 
 	 m+ n�.
We define L ∈ �p×p by

LM∪N = �M∪N (4.17)

LP\�M∪N� = �
 (4.18)

Then L is non singular, by (4.12) and (4.15). Moreover, the previous steps yield

L��x�L� =
(
diag�c1u1�x�	 
 
 
 	 cmum�x�	 0N � 0

0 ��x�

)
	

with ci = Bi�
�
i and � defined by ��x� = ���x���. It holds that ci > 0 by (4.8). By

rescaling ui we may assume ci = 1. Then we take � ∈ �p such that �M∪N = �M∪N .

Step 5. It remains to show that we can write ��x� as an affine function of
uM∪N �x�. This is an immediate consequence of the assumption that � ⊂ �� ≥ 0�, as
this yields that ��x� only depends on u�x�, which is a function of uM∪N �x�. �

Remark 4.2. For the canonical state space as treated in [9, 11] one has (4.6) with
	 = �n

≥0 and

��xM∪N � = B0 +
m+n∑
i=1

Bixi	

with Bi positive semi-definite.

Theorem 4.3. Let � ⊂ �p be given by (4.1) and satisfying (4.3). There exists an affine
SDE with drift �, diffusion matrix � and polyhedral state space � if and only if

∀i ∈ Q	 ∀x ∈ ��i � �i��x� = 0	 (4.19)

∀i ∈ Q	 ∀x ∈ ��i � �i��x� ≥ 0
 (4.20)

Proof. The “only if” part is Proposition 3.1. We prove the “if”-part.
Assume (4.19) and (4.20). By Proposition 4.1 we may assume

��x� =
(
diag�xM	 0N � 0

0 ��xM∪N �

)
	 for x ∈ � (4.21)

and

� = �m
≥0 ×	 ×�p−m−n	 (4.22)

for some index sets M = �1	 
 
 
 	 m�, N = �m+ 1	 
 
 
 	 m+ n�, an affine function �
and some convex polyhedron 	 ⊂ �n

≥0, such that uM∪N �x� = xM∪N . As a square root
of � on � we take

��x� = ���x��1/2 =
(
diag�

√�xM �	 0N � 0
0 ���xM∪N ��1/2

)

 (4.23)
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It remains to show that there exists a unique strong solution X to (2.1) which stays
in � for all x0 ∈ � .

Let x0 ∈ �p be arbitrary. By continuity of the coefficients � and � and
satisfaction of the linear growth condition (2.2), there exists a weak solution �X	W�
to (2.1) on some filtered probability space ��	� 	 ��t�	��. To show stochastic
invariance of � , note that by condition (4.20) and Proposition A.2 there exist ã ∈
�q×q with ãij ≥ 0 for i	 j ∈ Q with i �= j, and b̃ ∈ �q

≥0 such that ���x� = ãu�x�+ b̃.
Hence, u�Xt� satisfies the q-dimensional SDE

du�Xt� = �ãu�Xt�+ b̃�dt + diag
(√

�XM	t�	 0Q\M
)
dW̃t	 (4.24)

with initial condition u�x0�, where W̃ is a q-dimensional Brownian motion with
W̃M = WM (possibly after extending �). For this SDE strong existence and
uniqueness holds by [23, Theorem 1]. Together with Corollary 3.3 this yields u�Xt� ∈
�q

≥0, �-a.s., for all t ≥ 0 if u�x0� ∈ �q
≥0. In other words, Xt ∈ � , �-a.s., for all t ≥ 0

if x0 ∈ � . Thus � is stochastically invariant.
We now show pathwise uniqueness for (2.1). Therefore, let �X̃	W� be another

solution on the same filtered probability space ��	� 	 ��t�	�� with initial condition
x0. Pathwise uniqueness for (4.24) implies that XM∪N = uM∪N �X� = uM∪N �X̃� = X̃M∪N
a.s. Write R = P\�M ∪ N�. Since XR does not appear in the diffusion part of the
SDE, we have

d�XR	t − X̃R	t� = aRR�XR	t − X̃R	t�dt	 XR	0 − X̃R	0 = 0


So XR − X̃R solves a linear ODE which has 0 as its unique solution, whence XR = X̃R

a.s. and the result follows. �

By an inspection of the proof of Theorem 4.3 we see that if X solves an
affine SDE with polyhedral state space � given by (4.6), then u�X� solves the
affine SDE (4.24) with admissible parameters in the sense of [7] (that is, ã has
non negative off-diagonal elements and b̃ ∈ �q

≥0). Extending the dimension by
considering �u�X�	XR� instead of X, we get another affine SDE with state space
u���×�r (with r = #R) and diffusion matrix �̃ (say). Now if � can be written as
an affine transformation of u with positive semi-definite matrices, then �̃ is positive
semi-definite on the whole of �q

≥0 ×�r . In that case, u���×�r can be enlarged to
the canonical state space �q

≥0 ×�r and the resulting SDE is of the canonical form
as in [11]. We elaborate on this in the next subsection.

Remark 4.4. It is worth noting that in case an affine diffusion has a non-degenerate
diffusion matrix, its polyhedral state space is necessarily (an affine transformation)
of the canonical form �m

≥0 ×�p−m. Indeed, by (4.5) we have N = ∅, whence n = 0
and (4.6) reads L� + � = �m

≥ ×�p−m.

Example 4.5. By considering degenerate diffusion matrices, one can construct
affine diffusions with a polyhedral state space that is not (an affine transformation)
of the canonical form. Here, we give an example of an affine diffusion with a
degenerate but non-zero diffusion matrix, on a polyhedral cone, which is not a
symmetric cone (and hence different from the cones in [14], so in particular of a non-
canonical form).



Affine Diffusions 617

Let 	 = ⋂4
i=1�ui ≥ 0� ⊂ �3

≥0, with u1�x� = 2x1 + 2x2 + x3, u2�x� = −2x1 −
2x2 + x3, u3�x� = 2x1 − 2x2 + x3 and u4�x� = −2x1 + 2x2 + x3 and consider the 4-
dimensional polyhedral cone � = 	 ×�. Note that � is not a symmetric cone, as
it is not self-dual. Let � and � be given as

�N�x� =
−x1
−x2
x3

 	 �P\N arbitrary	 ��x� =
(
diag�0N � 0

0 x3

)
	

with N = �1	 2	 3�. Then � and � fulfil (4.19) and (4.20), so by Theorem 4.3 there
exists an affine diffusion with state space � , drift � and diffusion matrix �.

4.2. Diagonalizable Diffusion Matrix

In [3], it is shown that the diffusion matrix ��x� of an affine SDE with a standard
canonical state space cannot be diagonalized in general. That is, there does not
exist a non singular matrix L such that L��L−1x�L� is diagonal. In this subsection
we show that for a large class of polyhedral state spaces, including the standard
canonical state space, diagonalization of the diffusion matrix is still possible in a
different way, by extending the dimension. We also provide sufficient conditions for
this as well as we give an example of an affine diffusion whose diffusion matrix is
not diagonalizable.

Proposition 4.6. Let X be an affine diffusion with drift �, diffusion matrix � and
polyhedral state space � . Then X is in distribution equal to an affine transformation of
an affine diffusion with diagonal diffusion matrix and canonical state space of the form
�m

≥0 ×�p−m if and only if

��x� = B0 +
q∑
i=1

Biui�x�	 for some positive semi-definite Bi
 (4.25)

Proof. We first prove the “only if” part. Suppose X = LX̃ + � for some matrix L
and vector �, where X̃ is an affine diffusion with diagonal diffusion matrix �̃ and
polyhedral state space �̃ . Then it holds that L�̃�x�L� = ��Lx + �� and � = L�̃ + �.
Since �̃�x� is diagonal, we have

��Lx + �� = L�̃�x�L� =∑
i

di�x�L
i�Li��	 (4.26)

for some affine real-valued functions di. Note that Li�Li�� ≥ 0 and di�x� ≥ 0 for
x ∈ �̃ . To show that � is of the form (4.25), it suffices to write di as di�x� =∑

j �ijui�Lx + ��+ ci for non-negative �ij and ci. Note that (4.26) yields di�x +
y� = di�x� for y ∈ kerL (otherwise, replace di�x� by di���x��, where � denotes the
projection onto �kerL��). Hence, the affine map


i � Lx + � 
→ di�x�

is well defined and since 
i�y� ≥ 0 for y ∈ � = L�̃ + �, Proposition A.1 yields the
result.
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Next we prove the “if” part. Suppose (4.25) holds. By Proposition 4.1 we may
assume � is of the form (4.21) with

��xM∪N � = �0 +
q∑
i=1

�iui�x�	

for some positive semi-definite �i. In this case �u�X�	XP\�M∪N�� is an affine diffusion
where u�X� satisfies (4.24). Therefore, we assume without loss of generality that
u�x� = xM∪N , so that Q = M ∪ N , q = m+ n and � = �q

≥0 ×�p−q. Since �i ≥ 0, its
unique positive semi-definite square root ��i�1/2 exists. We write

�1/2 = (
��0�1/2 ��1�1/2 
 
 
 ��q�1/2

)
w�xQ� = vec�1Q	 x11Q	 
 
 
 	 xq1Q�


Now, note that

��xM∪N � = �1/2diag�w�xQ����
1/2��	

so X is an affine diffusion with drift � and diffusion matrix

��x� =
(
I 0
0 �1/2

)(
diag�xM	 0N � 0

0 diag�w�xQ��

)(
I 0
0 �1/2

)�



We can diagonalize this by extending the dimension. Define a non singular square
matrix T by

T =
(
�1/2 I
I 0

)
	

and let X̃ be an affine diffusion with drift ���x�	 0� and diffusion matrix(
I 0
0 T

)(
diag�xM	 0N � 0

0 diag�w�xQ�	 0Q�

)(
I 0
0 T

)�
	

and with the law of X̃P equal to the law of X0. Then(
I 0
0 T−1

)
X̃

solves an affine SDE with diagonal diffusion matrix diag�xM	 0N 	 w�xQ�	 0Q� and it
is easy to check that X̃P satisfies an affine SDE with drift �, diffusion matrix � and
initial condition the law of X0. Hence, X̃P is in distribution equal to X in view of
Remark 2.3, which yields the result. �

The relevance of diagonalizable diffusion matrices � is elucidated in affine term
structure models. In such models the short rate is an affine transformation of an
affine diffusion X, the state factor. In view of Proposition 4.6, for an unobservable
state factor X, we may assume without loss of generality that � is diagonal when
it is of the form (4.25). In particular this applies to affine diffusions in canonical
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form. This observation reveals that affine diffusions with canonical state space and
a nondiagonal diffusion matrix have the same potential as those with a diagonal
diffusion matrix, which answers the implicit question in the concluding section of [3].

The following example shows that there exist affine diffusions with
non-canonical polyhedral state space that do not meet the criteria of
Proposition 4.6.

Example 4.7. Consider the polyhedron � = 	 ×�2 ⊂ �4, where we take 	 =⋂3
i=1�ui ≥ 0� ⊂ �2

≥0, with u1�x� = x1, u2�x� = x2, u3�x� = x1 + x2 − 3
2 . Let � and �

be given as

�N�x� =
(−x1 + 1
−x2 + 1

)
	 �P\N arbitrary	 ��x� =

(
diag�0N � 0

0 ��x�

)
	

with N = �1	 2� and

��x� =
(
x1 + 1

2 1
1 x2 + 1

2

)



Then � and � fulfil (4.19) and (4.20), so by Theorem 4.3 there exists an affine
diffusion with state space � , drift � and diffusion matrix �. However, one can show
that � is not of the form (4.25).

We now give sufficient conditions for (4.25). In Proposition 4.8 below we prove
that (4.25) does not only hold under full-row rankness of � (equivalent to the
canonical state space) but also under the weaker condition of full row-rankness of(
� �
)
and an additional assumption.

Proposition 4.8. Let � ⊂ �p be given by (4.1) and satisfying (4.3). Suppose that
either

(i) � has full row-rank or that
(ii)

(
� �

)
has full row-rank and for all i ∈ Q, x ∈ �p it holds that uj�x� = 0 for all

j ∈ Q\�i� implies ui�x� ≥ 0.

Then (4.25) holds.

Proof. The case when � has full row rank is easy, since the state space can be
transformed in the canonical form �m

≥0 ×�p−m. We consider the case when � has
not full row rank. First we assume �i ≥ 0 for all i ∈ Q.

Let � ∈ ��p+1�×�p+1� be a non singular matrix such that �Q = (
� �

)
. We extend

the dimension of � and � by writing � = (
� �

)
. We also write ui�x� = �ix + �i, x ∈

�p, for all i ≤ p+ 1, in other words

ui�x� = �i

(
1
x

)



Let N = �−1. Then we have(
1
x

)
= �−1�

(
1
x

)
=

p+1∑
i=1

Niui�x�	 for x ∈ �p
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Let A = (
A0 A1 
 
 
 Ap

)
and abuse notation by writing

Ay =
p+1∑
i=1

Ai−1yi	 for y ∈ �p+1


Then we can write

��x� = A

(
1
x

)
=

p+1∑
i=1

�AN i�ui�x�


Define �i = ANi for i ≤ p+ 1. It is sufficient to prove that �i ≥ 0 for i ≤ q and
�i = 0 for i > q.

Let i ≤ q and write Ni = �N i
1	 N

i
2� with Ni

1 ∈ �, Ni
2 ∈ �p. We consider two cases.

Case 1. Suppose Ni
1 �= 0. Then Ni

2/N
i
1 ∈ �� ≥ 0� =� �. Indeed, for j ∈ Q, we

have

uj�N
i
2/N

i
1� =

1
Ni

1

�jN
i = 1

Ni
1

1�i=j�


So uj�N
i
2/N

i
1� = 0 for j ∈ Q\�i�, when by assumption ui�N

i
2/N

i
1� ≥ 0, that is, Ni

1 > 0
and Ni

2/N
i
1 ∈ � ⊂ �. It follows that

0 ≤ ��N i
2/N

i
1� =

1
Ni

1

ANi = 1
Ni

1

�i	

and thus �i ≥ 0, as Ni
1 > 0.

Case 2. Suppose Ni
1 = 0. Then we have

�i = ANi = lim
�↓0

�A

(
1

Ni
2/�

)
= lim

�↓0
���N i

2/��


So we have to prove Ni
2/� ∈ � for � small enough. For j ∈ Q it holds that

1�i=j� = �j

(
0
Ni

2

)
= �jN

i
2


This gives

uj�N
i
2/�� = �j + 1�i=j�/� ≥ 0	 for j ∈ Q	 � > 0	

since �j ≥ 0 for j ∈ Q by assumption. Hence, Ni
2/� ∈ � ⊂ � for � > 0 and, thus,

�i ≥ 0.
We have just shown that �i ≥ 0 for i ≤ q. We now show that �i = 0 for i > q.

Let i > q and take x0 ∈ � . Write R = P ∪ �p+ 1�. Since rank � = p and rank �R\�i� =
p− 1, there exists � ∈ �p such that �j� = 0 for all j ∈ R\�i� and �i� �= 0. Then for all
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k ∈ � we have uj�x0 + k�� = uj�x0� for j ∈ R\�i�, in particular for all j ∈ Q. Hence,
x0 + k� ∈ � for all k ∈ �. Therefore,

0 ≤ ��x0 + k�� =
p+1∑
j=1

�juj�x0 + k�� = ��x0�+ k�i�i�	 for all k ∈ �


Since �i� �= 0, it follows that �i = 0.
Now consider the general case without the restriction �i ≥ 0 for all i ∈ Q. Let

x0 ∈ � and for i ∈ Q define

ũi � �
p → � � x 
→ �̃ix + �̃i	

by ũi�x� = ui�x + x0�, x ∈ �p, i.e. �̃i = �i + �ix0 and �̃i = �i. Moreover, write �̃�x� =
��x + x0�, x ∈ �p. Then �̃i = ũi�0� = ui�x0� ≥ 0, i ∈ Q. Note that if ũj�x� = 0 for all
j ∈ Q\�i�, then uj�x + x0� = 0 for all j ∈ Q\�i� and hence ũi�x� = ui�x + x0� ≥ 0 by
assumption. Moreover,

(
�̃ �̃

) = (
�+ �x0 �

) = (
� �

) ( 1 0
x0 I

)
	

which has full row rank. Therefore, we are in the previous situation, for which we
have proved the existence of positive semi-definite �i ∈ �p×p for i ∈ Q ∪ �0� such
that

��x + x0� = �̃�x� = �0 +
q∑
i=1

�iũi�x� = �0 +
q∑
i=1

�iui�x + x0�


This gives the result. �

Corollary 4.9. Let � ⊂ �p be given by (4.1). Suppose � is contained in a polyhedron
	 ⊂ �� ≥ 0� which meets the criteria of Proposition 4.8. Then (4.25) holds.

Proof. Write 	 = ⋂r
i=1�vi ≥ 0�, for some affine functions vi, with r ∈ �. By

Proposition 4.8 it holds that

��x� = B0 +
r∑

i=1

Bivi�x�	 (4.27)

for some positive semi-definite Bi. By Proposition A.1 there exist �ij ≥ 0, ci ≥ 0 such
that

vi =
r∑

j=1

�ijuj + ci


Plugging this in into (4.27) we get the result. �

Example 4.10. In the two-dimensional case, the polyhedrons which satisfy the
conditions of Proposition 4.8 are the “triangles” (including those with vertices and
edges in “infinity,” like �0 ≤ x1 ≤ 1� ∩ �x2 ≥ 0� and �x1 ≥ 0�). Thus by Corollary 4.9,
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if � is contained in a triangle that is a subset of �� ≥ 0�, then (4.25) holds and �
can be transformed in canonical form (see the proof of Proposition 4.6). However,
this condition is sufficient, but not necessary. For example let

��x� =
(
x1 1
1 x2

)
=
(
0 1
1 0

)
+
(
1 0
0 0

)
x1 +

(
0 0
0 1

)
x2	

and take u1�x� = 2x1 − x2, u2�x� = − 1
2x1 + x2, u3�x� = − 9

4 + x1 + x2. Then �� ≥
0� = �x ∈ �2

≥0 � x2 ≥ 1
x1
� and � = ⋂3

i=1�ui ≥ 0� ⊂ �� ≥ 0�, but � is not contained
in a triangle which is a subset of �� ≥ 0�. Still we can write � as an affine
transformation of the ui’s with positive semi-definite coefficients, namely

� = 1
2

(
1 1
1 1

)
+ 1

9

(
4 2
2 1

)
u1 +

1
9

(
2 4
4 8

)
u2 +

1
9

(
2 −2
−2 2

)
u3


4.3. Classical Model

In this subsection, we revisit the classical model as introduced by Duffie and Kan
in [10]. We assume � is of the form

� = � diag�v��� =
p∑
i=1

�i��i��vi	 (4.28)

with � ∈ �p×p, v � �p → �p � x 
→  x + ! for some  ∈ �p×p, ! ∈ �p. In addition
we assume � ⊂ ⋂p

i=1�vi ≥ 0� and �� �= ∅. Under conditions (4.19) and (4.20), the
proof of Theorem 4.3 constructs a square root � of � on � such that (2.1) has a
unique strong solution. We show that the natural choice

� = � diag�
√�v�� = (

�1
√�v1� 
 
 
 �p

√�vp�
)

also gives strong existence and uniqueness for (2.1). This is not immediately clear in
view of Remark 2.3.

Proposition 4.11. Suppose � is of the form (4.28) and assume �� �= ∅, � ⊂ ⋂p
i=1�vi ≥

0� and conditions (4.19) and (4.20) are met. Then (2.1) is an affine SDE for � =
� diag�

√�v��.

Proof. Since conditions (4.19) and (4.20) are sufficient for invariance by
Theorem 4.3, it suffices to prove existence and uniqueness of a strong solution.

Note that X solves an affine SDE with ��x� = � diag�
√�v�x��� if and only if

LX + � solves an affine SDE with ��x� = L� diag�
√�ṽ�x���, where ṽ�x� = v�L−1�x −

���, for some non singular matrix L and vector �. By Proposition 4.1 we can,
therefore, assume without loss of generality that � is of the form (4.21) and � of
the form (4.22). Since all square roots of a positive semi-definite matrix are related
by an orthogonal transformation, we have

� diag�
√
v�x�� =

(
diag�

√
xM	 0N � 0
0 ���xM∪N ��1/2

)
O�x�	 (4.29)
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for x ∈ � , with O�x� an orthogonal matrix, possibly depending on x. We show that
there exists a matrix U ∈ ��m+n�×p with orthonormal rows such that

�M∪N diag�
√�v�x��� = diag�

√�xM �	 0N �U	 for all x ∈ �p


Let x0 ∈ �� and define U = OM∪N �x0�. We have to show that

�ij

√
�vj�x�� =

√�xi�Uij	 for all i ∈ M	 all j
 (4.30)

For i ∈ M we have

�ij

√
vj�x� = √

xiOij�x�	 for all j and all x ∈ �


If �ij �= 0, then

vj�x� = �−2
ij xiO

2
ij�x�	 for all x ∈ �	

which yields vj�x� = cxi for some c ≥ 0, by Proposition A.4. If c > 0, then Oij�x� is
constant, when equal to Uij and (4.30) follows. If c = 0 or �ij = 0, then Oij�x� = 0
for xi �= 0, whence Uij = 0 and again (4.30) holds.

Let �X	W� be a weak solution to (2.1) on some filtered probability space
��	� 	 ��t�	��. Then UW is an �m+ n�-dimensional Brownian motion and it
follows that XM∪N solves an SDE with diffusion part diag�

√�xM �	 0N �. The strong
existence and uniqueness for (2.1) follows along the same lines as the proof of
Theorem 4.3, as ��x� only depends on xM∪N by Proposition A.1. �

In the case that �� > 0� �= ∅, we can strengthen the result of Proposition 4.6.

Proposition 4.12. Consider the situation of Proposition 4.11. If �� > 0� �= ∅, then
the solution to (2.1) can be obtained by a bijective affine transformation of an
affine diffusion with diagonal diffusion matrix and canonical state space of the form
�m

≥0 ×�p−m.

Proof. As in the proof of Proposition 4.11 we may assume � is of the form (4.21)
and � of the form (4.22). Since �� > 0� �= ∅ we have N = ∅. Take x0 ∈ �� = �m

>0 ×
�p−m with x0	i = 1 for i ∈ M . By strict positive definiteness of ��x0	M� we can apply
the linear transformation

x 
→
(
IMM 0
0 ���x0	M��

−1/2

)
x	

so that we may assume without loss of generality that ��x0	M� = I, i.e. ��x0� = I.
Since vi�x0� > 0 for all i, we can substitute vi/vi�x0� for vi and

√
vi�x0��

i for �i,
which does not affect ��x� and yields vi�x0� = 1 for all i. Hence

��� = ��x0� = I	

in other words, � is orthogonal. Thus, we can write

� diag�v�x�� =
(
diag�xM� 0

0 ��xM�

)
�
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By symmetry, ��xM� can be diagonalized by an orthogonal matrix U�xM� for all xM .
We show that U�xM� is constant. The above display yields

�P\M diag�v�x�� = ��xM��P\M	

so for all xM the eigenvectors of ��xM� are in the span of the columns of �P\M , since
rank�P\M = p−m ≥ rank��xM�. Hence, the eigenvectors do not depend on xM ,
which implies that U�xM� is constant, say equal to an orthogonal matrix O. Thus,
O���xM�O = diag�w�xM��, for some affine vector-valued function w. Applying the
orthogonal transformation

x 
→
(
IMM 0
0 O�

)
x	

we may assume ��xM� is diagonal. Hence,

� diag�v�x�� =
(
diag�xM� 0

0 diag�w�xM��

)
�	

with � orthogonal. It is easy to show that this yields

� diag�
√�v�x��� =

(
diag�

√�xM �� 0
0 diag�

√�w�xM���
)
�


Since an orthogonal transformation of a Brownian motion is again a Brownian
motion, the � on the right-hand side can be absorbed in the underlying Brownian
motion. The result follows. �

Using the above we are able to give an alternative proof of the existence and
uniqueness results from [10], slightly strengthening the statements made there, see
Remark 4.15 below. We first show how the well-known condition for invariance of
the open state space �p

>0 follows from Proposition 3.7.

Proposition 4.13. Let ��x� = diag�x� and � = �p
≥0. Then �� is stochastically

invariant if

∀i	 ∀j �= i � aij ≥ 0 and bi ≥
1
2



Proof. We apply Proposition 3.7 with ��x� = det ��x� = x1x2 
 
 
 xp. It holds that

���x���x� = ��x�
(
1 
 
 
 1

)
	

and
∑p

i=1�A
i�i� = (

1 
 
 
 1
)�
, when

���x�

(
��x�− 1

2

p∑
i=1

�Ai�i
)
=∑

i

∏
j �=i

xj

(
aix + bi −

1
2

)



This is non negative for all x ∈ � = �p
≥0 if aij ≥ 0 and bi ≥ 1

2 for all i	 j. By applying
a measure transformation with density ������X� ·W� for some � ∈ �p (which yields
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a probability measure by [20, Proposition 3.4]), we see that the sign of the diagonal
elements aii is irrelevant for stochastic invariance of ��. �

Corollary 4.14. Suppose � is of the form (4.28) and assume �� �= ∅, � ⊂ ⋂p
i=1�vi ≥

0� and �� > 0� �= ∅. Then (2.1) is an affine SDE for � = �
√�v� if and only if, up to a

reparametrization of � and v, � = ⋂q
i=1�vi ≥ 0� = �� ≥ 0� =� � for some q ≤ p and

∀i ≤ q	 ∀j ≤ p �  i�
j = 0 or vi = vj	 (4.31)

∀i ≤ q	 ∀x ∈ ��i �  i�ax + b� ≥ 0
 (4.32)

Moreover, if we strengthen (4.32) to

∀i ≤ q	∀x ∈ ��i �  i�ax + b� ≥ 1
2
 i��

� �
i 	 (4.33)

then �� = ⋂q
i=1�vi > 0� is stochastically invariant.

Proof. Note that �� > 0� �= ∅ implies � is non singular. Hence, � ≥ 0 if and only if
�−1���−1�� = diag�v� ≥ 0, so

� =
p⋂
i=1

�vi ≥ 0�
 (4.34)

Therefore, if � is stochastically invariant, then � = �, since ��x� is singular for x ∈
�� by condition (4.19), required for invariance. For the first part of the proposition,
it remains to show that conditions (4.19) and (4.20) are equivalent to (4.31) and
(4.32). Permuting and rescaling the elements in v and column vectors in � we may
assume vi = ui for i ≤ q, that is,

� =
q⋂
i=1

�vi ≥ 0�


Now, Condition (4.19) reads

∀i ∈ Q	 j ∈ P �  i�
j = 0 or vj = cvi for some c > 0	

by Proposition A.4. The constant c can be taken equal to 1 by rescaling v and �.
This gives the equivalence between (4.19) and (4.20), while the equivalence between
(4.31) and (4.32) is immediate.

For the second part of the proposition we follow the proof of Proposition 4.1
up to Step 4. If we take

ui = � i��
� �

i �
−1vi	 for i ≤ q	

then (4.10) gives

ci = Bi�
�
i = vi�x0�

−1� i��
� �

i �
−1 i� diag�v�x0���

� �
i = 1	
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by choosing x0 ∈ �� such that vi�x0� = 1 for i ≤ q. Hence the affine transformation
Lx + � from Proposition 4.1 satisfies

�Lx + ��i = ui�x� = � i��
� �

i �
−1vi�x�	 for i ∈ Q


Let X be an affine diffusion with SDE (2.1). We have that Y �= �LX + ��Q satisfies
an affine SDE of the form

dYt = �̃�Yt�dt + diag�
√�Yt��dWt	

with state space �q
≥0, where we write

�̃�x� = L��L−1�x − ��� = ãx + b̃	

for some matrix ã with non-negative off-diagonal elements and vector b̃ with non-
negative components. Note that �� is invariant for X if and only if �q

>0 is invariant
for Y . By Proposition 4.13, the latter holds if b̃i ≥ 1

2 for all i, or equivalently, if
�̃i�y� ≥ 1

2 for all y ∈ �q
≥0 with yi = 0. Substituting y = Lx + � gives

�̃i�Lx + �� ≥ 1
2

for all x ∈ ��i


Since �̃�x� = L��L−1�x − ��� and Li = � i��
� �

i �
−1 i, the result follows. �

Remark 4.15. In [10], it is assumed that q = p. Moreover, the strong existence and
uniqueness is only proved under (4.31) and (4.33), whereas the case that the process
X might hit the boundary �� is not treated. Note also that in [10] the inequality in
(4.33) is strict.

5. Quadratic State Space

In this section, we consider affine diffusions where the boundary of the state space
� is quadratic instead of linear. Let us be given a quadratic function

��x� = x�Ax + b�x + c	 (5.1)

for some symmetric non-zero A ∈ �p×p, b ∈ �p, c ∈ �. We take � = �� ≥ 0� where
� is given by (4.2) (thus, � is convex) and we assume �� is a non-empty connected
component (maximal connected subset) of �� > 0� or �� < 0�. Note that then
automatically the boundary of the state space is quadratic, i.e. �� ⊂ �� = 0�. By
the following proposition, there are only three types possible for �.

Proposition 5.1. Let � ⊂ �p be convex and assume �� is a non-empty connected
component of �� > 0� or �� < 0�, with � given by (5.1). Then there exists an affine
transformation such that either ��x� = x1 −

∑q
i=2 x

2
i , ��x� =

∑q
i=1 x

2
i + d or ��x� =

x21 −
∑q

i=2 x
2
i + d, for some 1 ≤ q ≤ p, d ∈ �.
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Proof. Since A is symmetric, it is diagonalizable by an orthogonal matrix. By
further scaling one can take the diagonal elements equal to −1, 0 or 1. Using the
equality

x�x + b�x =
(
x� + 1

2
b�
)(

x + 1
2
b

)
− 1

4
b�b	

we can apply an affine transformation such that for some disjoint Q	Q′ ⊂ P\�1� the
quadratic function � is of the form

��x� = x1 −
∑
i∈Q

x2i +
∑
i∈Q′

x2i 	 (5.2)

or

��x� = x21 −
∑
i∈Q

x2i +
∑
i∈Q′

x2i + d	 (5.3)

for some d ∈ �. If � is of the form (5.2), then � is of the form

� =
{
x ∈ �p � x1 ≥

∑
i∈Q

x2i −
∑
i∈Q′

x2i

}
	

possibly after replacing x1 by −x1 and interchanging Q and Q′. Convexity of �
yields that the Hessian of

∑
i∈Q x2i −

∑
i∈Q′ x2i is positive semi-definite, which implies

that Q′ = ∅. Permuting coordinates gives Q = �2	 
 
 
 	 q� with q = #Q+ 1.
Now assume � is of the form (5.3). We have to show that either Q′ = ∅ or

#Q ≤ 1. Define the function f by f�xQ∪Q′� =∑
i∈Q x2i −

∑
i∈Q′ x2i − d. There are two

possible forms � can assume, namely

� = �x ∈ �p � x1 ≥ f�xQ∪Q′�1/2	 xQ∪Q′ ∈ K�

or � = �x ∈ �p � �x1� ≤ f�xQ∪Q′�1/2	 xQ∪Q′ ∈ K�	

where K is convex with K� a nonempty connected component of �f ≥ 0�. In the first
case we have that the Hessian of f�xQ∪Q′�1/2 is positive semi-definite, while in the
second case the Hessian is negative semi-definite. Now suppose Q′ �= ∅. We show
that in that case #Q ≤ 1. Let xQ∪Q′ ∈ K�. For i ∈ Q′, we have

�2

�x2i
f�xQ∪Q′�1/2 = −f�xQ∪Q′�−1/2 − x2i f�xQ∪Q′�−3/2 < 0	

hence, the Hessian is negative semi-definite. For i ∈ Q, we have

�2

�x2i
f�xQ∪Q′�1/2 = f�xQ∪Q′�−1/2 − x2i f�xQ∪Q′�−3/2	

which, therefore, also has to be negative. Now if i	 j ∈ Q and i �= j, then

�2

�xi�xj
f�xQ∪Q′�1/2 = −f�xQ∪Q′�−3/2xixj	
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from which we deduce that

det

 �2

�x2i

�2

�xi�xj

�2

�xj�xi

�2

�x2j

 f�xQ∪Q′�−1/2

= f�xQ∪Q′�−1/2
(
f�xQ∪Q′�−1/2 − �x2i + x2j �f�xQ∪Q′�−3/2

)
< 0


This contradicts the negative semi-definiteness of the Hessian. Thus, it holds that
#Q ≤ 1. �

If (2.1) is an affine SDE with drift �, diffusion matrix � and state space
� = �� ≥ 0� with non-empty quadratic boundary �� ⊂ �� = 0�, then stochastic
invariance of � yields

���x���x� = 0	 for all x ∈ ��
 (5.4)

by Proposition 3.1 and the remark preceding Proposition 3.4. This excludes that �
is of the form ��x� =∑q

i=1 x
2
i + d or ��x� = x21 −

∑q
i=2 x

2
i + d with d �= 0. Indeed,

suppose ��x� =∑p
i=1 x

2
i + d with d < 0 (for simplicity we take q = p), then (5.4)

reads

x���x� = 0	 for all x such that ��x� = 0


Regarding ��x� as a univariate polynomial in x1, we see that it has distinct roots

±
(
− d −

p∑
j=2

x2j

)1/2

	

for x close enough to zero. Therefore, these are also the roots of x��i�x�. Since the
latter has maximal degree 2, it follows that

x��i�x� = Pi��x�	 for all i and x ∈ �p	

for some constant Pi. Note that the right-hand side of the above display has a
constant term Pid. Since the left-hand side only contains multiples of x, this yields
Pi = 0 for all i, so that x���x� = 0 for all x ∈ �p. Lemma 5.2 yields that ��x� = 0
for all x, which contradicts the assumption that � = �� ≥ 0� and �� �= ∅. Likewise
one can show that ��x� = x21 −

∑q
i=2 x

2
i + d with d �= 0 is impossible.

Lemma 5.2. Let � � �p → �p×p � x 
→ A0 +∑p
k=1 A

kxk with Ak ∈ �p×p symmetric
and assume x���x� = 0 for all x. Then ��x� = 0 for all x.

Proof. It is clear that A0 = 0. We show that Ak = 0 for k > 0. It holds that

0 =
(
x�

p∑
k=1

Akxk

)
j

=
p∑

k=1

p∑
i=1

xixkA
k
ij =

∑
1≤i<k≤p

xixk�A
k
ij + Ai

kj�

+
p∑
i=1

x2i A
i
ij	
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for all j. Hence, for all i	 j we have Ai
ij = 0 and Ak

ij = −Ai
kj for k �= i. Since Ak is

symmetric, the latter gives Ak
ij = −Ai

kj = −Ai
jk. So, if we permute the indices i	 j	 k

by the cycle �i 
→ j	 j 
→ k	 k 
→ i�, then Ak
ij gets a minus sign. Permuting the indices

repeatedly we obtain

Ak
ij = −Ai

jk = A
j
ki = −Ak

ij	

which implies Ak
ij = 0 for all i	 j and k �= i. Hence, Ak = 0 for all k, as we have

already shown that Ai
ij = 0 for all i	 j. �

Thus, in order to characterize all affine diffusions with quadratic state space,
there are two cases to consider, namely ��x� = x1 −

∑q
i=2 x

2
i and ��x� = x21 −∑q

i=2 x
2
i . In the next subsections we characterize for these two forms of � all possible

� which can act as a diffusion matrix of an affine SDE, i.e. which � satisfy (5.4).
Moreover, we are able to construct a square root � of � such that (2.1) is an
affine SDE with quadratic state space � , generalizing the two-dimensional setting
as treated in [9, Section 12] and [12]. In particular we show existence and uniqueness
of a strong solution.

5.1. Parabolic State Space

Assume � is of the form ��x� = x1 −
∑q

i=2 x
2
i 	 with 1 < q ≤ p. The state space �

then necessarily equals � = �� ≥ 0�. For x ∈ �p we write x = �x1	 y
�	 z� ∈ �1 ×

�q−1 ×�p−q and we define affine matrix-valued functions " and � by

"�x� =
(
4x1 2y�

2y I

)
	 ��x� =

(
0 0 
 
 
 0

T12�y� T13�y� 
 
 
 Tq−2	q−1�y�

)
	

with Tij � �
q−1 → �q−1 for 1 ≤ i < j < q given by Tij�y�i = yj , Tij�y�j = −yi,

Tij�y�k = 0 for k �= i	 j. Moreover, we write Q = �2	 
 
 
 	 q�. Now, condition (5.4)
reads (

1 −2y� 0
)
��x� = 0 for all x ∈ �p such that x1 = y�y
 (5.5)

We use the following lemmas to characterize those � that satisfy this condition in
Proposition 5.5.

Lemma 5.3. Consider the linear space


 = {
a � �p → �q affine � (1 −2y�

)
a�x� = 0 for all x with x1 = y�y

}

 (5.6)

Then a basis for 
 is formed by the columns of " and �.

Proof. Clearly these columns are linearly independent elements of 
. To prove that
they span 
 we use a dimension argument. Let Aff��p	�q� denote the space of
affine functions from �p to �q and let Quadr��p	��/�x1 − y�y� be the space of
quadratic functions from �p to �, modulo x1 − y�y (that is, p and q are equivalent
if p�x�− q�x� = c�x1 − y�y� for some constant c). Consider the linear operator

L � Aff��p	�q� → Quadr��p	��/�x1 − y�y� � a�x� 
→ (
1 −2y�

)
a�x�	
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and note that 
 = kerL. By the dimension theorem for linear operators, we have

dimAff��p	�q� = dim kerL+ dim imL


It holds that dimAff��p	�q� = pq + q. Since x1 ≡ y�y, a basis for imL is given by

�1	 x2	 
 
 
 	 xp� ∪ �xixj � 2 ≤ i ≤ q	 1 ≤ j ≤ p�	

when

dim imL = p+ �q − 1�p−
(
q − 1
2

)
= pq −

(
q − 1
2

)



It follows that dim kerL = q + 1
2 �q − 1��q − 2�, which is the number of columns in

" and �. Thus, the columns span the kernel of L. �

Lemma 5.4. Let 
 be defined by (5.6) and suppose M � �p → �q×q is affine and
M�x� is symmetric for all x ∈ �p. If the columns of M are in 
, then M = c" for some
c ∈ �.

Proof. By Lemma 5.3 there exist matrices A and B such that

M�x� = "�x�A+ ��x�B


Write T�y� = �Tij�y��1≤i<j<q and B = (
B1 B̃

)
. Then the above display reads

M�x� =
(

4x1A11 + 2y�AQ1 4x1A1Q + 2y�AQQ

2yA11 + AQ1 + T�y�B1 2yA1Q + AQQ + T�y�B̃

)
Since M�x� is symmetric it immediately follows that A1Q = 0 and AQ1 = 0. Define
N�x� = M�x�− A11"�x�. Then N is also symmetric. We have

N�x� =
(

0 2y�C
T�y�B1 C + T�y�B̃

)
	

with C = AQQ − A11I. This yields C = C� and T�y�B1 = 2Cy. Since y�T�y� = 0, the
latter implies y�Cy = 0, whence C = 0, as C is diagonalizable by an orthogonal
matrix. Thus, AQQ = A11I and it remains to show that B̃ = 0.

It holds that T�y�B̃ is symmetric and y�T�y�B̃ = 0. Lemma 5.2 yields T�y�B̃ = 0,
whence B̃ = 0 by linear independence of the columns of T�y�, as we needed to prove.

�

Proposition 5.5. If (5.5) holds, then necessarily � is of the form

��x� =
(
c"�x� A�x�
A�x�� B�x�

)
	 (5.7)

for some c ≥ 0, with A�x� = "�x�A1 + ��x�A2 for some matrices A1	 A2 and B � �p →
��p−q�×�p−q� affine and symmetric. Moreover, if c = 1 and A1 = 0, then it holds that

B�x�− A�
2 ��x�

���x�A2 ≥ 0	 (5.8)

for all x ∈ � = �� ≥ 0�.
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Proof. The first part follows from Lemma 5.3 and Lemma 5.4. It remains to show
(5.8).

Suppose c = 1 and A1 = 0. By positive semi-definiteness of �, we have

0 ≤ (
v� w�) ��x�(v

w

)
= v�"�x�v+ 2v���x�A2w + w�B�x�w	

for all v ∈ �q, w ∈ �p−q, x ∈ � . Fix w ∈ �p−q, x ∈ � arbitrarily and take v =
−��x�A2w. Noting that "�x���x� = ��x� for all x ∈ �p, the above display then reads

w�B�x�w − w�A�
2 ��x�

���x�A2w ≥ 0	

which proves (5.8). �

To show the existence of an affine diffusion with parabolic state space in
Theorem 5.7, we need the following result. Its proof is based on a modification of
a result by Yamada and Watanabe [23, Theorem 1].

Proposition 5.6. There exists a unique strong solution to the SDE

d
(
X1	t

Yt

)
=
(
a11X1	t + a1QYt + b1

aQQYt + bQ

)
dt +

(
2
√�X1	t − Y�

t Yt� 2Y�
t

0 I

)
dWt


Proof. By continuity of the coefficients and satisfaction of the linear growth
condition (2.2), there exists a weak solution ��X1	 Y�	W� on some filtered probability
space ��	� 	 ��t�	�� carrying a Brownian motion W . For strong existence and
uniqueness it suffices to prove pathwise uniqueness. Therefore, assume ��X̃1	 Ỹ �	W�
is another solution on the same probability space. We see that the equation for Y
does not contain X1 and in fact it is an SDE which has a unique strong solution,
whence Yt = Ỹt a.s. for all t ≥ 0. Write Z = X1 − Y�Y and Z̃ = X̃1 − Ỹ�Ỹ . Then it
follows that

d�Zt − Z̃t� = a11�Z1	t − Z̃1	t�dt + 2
(√�Zt� −

√
�Z̃t�

)
dW1	t


Arguing as in the proof of [17, Proposition 5.2.13] (for instance), we deduce that
Zt = Z̃t a.s. for all t ≥ 0. Thus, X1	t = Zt + Y�

t Yt = Z̃t + Ỹ�
t Ỹt = X̃1	t a.s. for all t ≥ 0.

�

Theorem 5.7. Let ��x� = x1 − y�y and suppose �� ≥ 0� = �� ≥ 0�. Then there exists
an affine SDE with drift �, diffusion matrix � and state space � = �� ≥ 0� if and only if

���x���x� = 0	 (5.9)

���x���x� ≥ tr��QQ�x�� (5.10)

for all x ∈ �� = �� = 0�.
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Proof. Conditions (3.6) and (3.7) reduce to (5.9) and (5.10). The “only if” part
follows, as these boundary conditions are necessary for stochastic invariance of �
by Proposition 3.4.

Suppose the boundary conditions (5.9) and (5.10) hold. Then, by
Proposition 5.5, it holds that � is of the form (5.7) for some c ≥ 0. If c = 0, then
necessarily � = �B ≥ 0� and we take

��x� =
(
0 0
0 �B�x��1/2

)



It is easy to see that (2.1) admits a unique strong solution and that � is invariant.
If c > 0, then we apply the linear transformation x1 
→ c−1x1, y 
→ c−1/2y, z 
→ z−
c−1A1�x1	 y�, so that we may assume c = 1 and A1 = 0. Then (5.8) holds and as a
square root of � on � we take

��x� =
(

��x� 0

A�
2 ��x�

� #�x�

)
	

with � and # defined by

��x� =
(
2
√�x1 − y�y� 2y�

0 I

)
	

# = �B − A�
2 �

��A2�1/2


To see that ��x���x�� = ��x� for x ∈ � , note that ��x���x� = ��x� for all x ∈ � .
Proposition 3.4 gives that � is invariant for (2.1). It remains to prove existence and
uniqueness of a strong solution.

The boundary condition (5.10) reads

�1�x�− 2y��Q�y� ≥ q − 1	 for allx such that x1 = y�y	

so necessarily ��1�∪Q admits the form

��1�∪Q�x� =
(
a11 a1Q 0
0 aQQ 0

)x1y
z

+ b�1�∪Q
 (5.11)

Proposition 5.6 gives the result. �

For stochastic invariance of a parabolic state space � , we now give sufficient
conditions on the diffusion matrix and sufficient and necessary conditions on
the drift, analogous to the admissibility conditions for polyhedral state spaces in
canonical form.

Proposition 5.8. Condition (5.8) holds if B admits the form

B�x� = �q − 2�x1A
�
2 A2
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Proof. One can show using Cauchy-Schwarz that

��x�i��x�
�
i I ≥ ��x��i ��x�i	 for all x and i


Hence, (∑
i

��x�i��x�
�
i

)
I ≥∑

i

��x��i ��x�i


The right-hand side equals ��x����x�, while the left-hand side is equal to
�q − 2�

(∑
i y

2
i

)
I, which is smaller than �q − 2�x1I for x ∈ � . Hence,

�q − 2�x1A
�
2 A2 − A�

2 ��x�
���x�A2 = A�

2 ��q − 2�x1I− ��x����x��A2 ≥ 0	

for x ∈ � , which yields the result. �

Proposition 5.9. Suppose X is an affine diffusion with state space � = �� ≥ 0� = �x ∈
�p � x1 ≥ y�y� and �QQ �= 0. Then X is a linear transformation of an affine diffusion
with the same state space � , diffusion matrix � of the form (5.7) with c = 1 and with
drift ��x� = ax + b satisfying (5.11) as well as

a11I− 2aQQ = diag�dQ� (5.12)

dQ1
> 0 (5.13)

dQ2
= 0 (5.14)

a1Q2
= 2bQ2

(5.15)

b1 ≥ q − 1+∑
i∈Q1

1
4d

−1
i �a1i − 2bi�

2	 (5.16)

for some vector d and some disjoint Q1 and Q2 with Q = Q1 ∪Q2.

Proof. As in the proof of Theorem 5.7 we can assume � is of the form (5.7) with
c = 1. Then tr��QQ�x�� = q − 1 for all x, so the boundary condition (5.10) for the
drift reads

y��a11I− 2aQQ�y + �a1Q − 2b�Q�y + b1 − q + 1 ≥ 0	 for all y ∈ �p−1


For this it is necessary that M �= a11I− 2aQQ is positive semi-definite. Moreover, if
y is in the kernel of M , then y should also be in the kernel of a1Q − 2b�Q . We can
diagonalize M by an orthogonal matrix O, so D = OMO� is diagonal with positive
diagonal elements di for i ∈ Q1 and di = 0 for i ∈ Q2 = Q\Q1, for some Q1 ⊂ Q.
Applying the orthogonal transformation y 
→ Oy, the above condition becomes∑

i∈Q1

dix
2
i +

∑
i∈Q1

�a1i − 2bi�xi + b1 − q + 1 ≥ 0	 for all xQ1



We can write the left-hand side as

∑
i∈Q1

di

(
xi +

1
2
d−1
i �a1i − 2bi�

)2

− 1
4

∑
i∈Q1

d−1
i �a1i − 2bi�

2 + b1 − q + 1	
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which is non negative for all xQ1
if and only if

−1
4

∑
i∈Q1

d−1
i �a1i − 2bi�

2 + b1 − q + 1 ≥ 0


This yields the result. �

Remark 5.10. Note that (5.12) implies that aQQ is diagonal. Hence, the coordinates
of XQ are mutually independent.

Proposition 5.11. Consider the situation of Proposition 5.9. If we strengthen
condition (5.16) to

b1 ≥ q + 1+ ∑
i∈Q1

1
4
d−1
i �a1i − 2bi�

2	 (5.16′)

then �� becomes invariant.

Proof. It suffices to verify condition (3.9) of Proposition 3.7. Recall that ��x� =
x1 − y�y and ��x� = A0 +∑p

i=1 A
ixi is of the form (5.7) with c = 1. It follows that

���x����x�− 1
2

∑p
i=1�A

i�i� equals

a11x1 + a1Qy − 2y�aQQy − 2y�bQ + b1 − q − 1


If in addition to conditions (5.12)–(5.16′) also a11 ≥ 0 is imposed, then for x ∈ � the
above display is bounded from below by

y��a11I− 2aQQ�y + �a1Q − 2b�Q�y + b1 − q − 1


This is non negative for all y ∈ �q−1 under the imposed assumptions, similar as in
the proof of Proposition 5.9, which yields (3.9). The nonnegativity of a11 can be
dispensed with, as shown as follows.

By applying a measure transformation with density ������X� ·W� for some
� ∈ �p with �i = 0 for i �= 1 (which yields a probability measure by [20,
Proposition 3.4]), we see that � is also invariant for the SDE with drift �̃�x� =
ax + b + ��x�� = ãx + b, where ã11 = a11 + 4�, ãQQ = aQQ + 2�I and the remaining
coordinates unaltered. Note that ã11I− 2ãQQ = a11I− 2aQQ, so conditions (5.12)–
(5.16′) are not affected by such a measure transformation. This gives the result. �

Example 5.12. Here we give a concrete example of an affine diffusion on a
parabolic state space, which is not of the kind discussed in [12]. Consider the state
space � = ��x1	 y	 z� ∈ �×�2 ×� � x21 ≥ y21 + y22�. As diffusion matrix we take

��x� =


4x1 2y1 2y2 0
2y1 1 0 y2
2y2 0 1 −y1
0 y2 −y1 x1


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and we take the drift � of the form

��x� =


a11 a12 a13 0
0 1

2 �a11 − d1� 0 0
0 0 1

2 �a11 − d2� 0
∗ ∗ ∗ ∗

+


b1
b2
b3
∗

 	

with d1	 d2 > 0, b1 satisfying (5.16) and ∗ arbitrary. Then the conditions of
Proposition 5.9 are satisfied (with Q2 = ∅), which yields the existence of an affine
diffusion with state space � , drift � and diffusion matrix �.

We further note that from this example one can easily construct affine diffusions
on a parabolic state space with a degenerate (and non-zero) diffusion matrix. For
this, take � ×� and extend ��x� to

4x1 2y1 2y2 0 0
2y1 1 0 y2 y2
2y2 0 1 −y1 −y1
0 y2 −y1 x1 x1
0 y2 −y1 x1 x1

 


5.2. The Lorentz Cone

Let p ≥ q > 1. For x ∈ �p we write x = �x1	 y
�	 z� ∈ �1 ×�q−1 ×�p−q. We

consider the quadratic form

��x� = x21 −
∑
i∈Q

x2i 	

where Q = �2	 
 
 
 	 q�. The closed convex set �� ≥ 0� is known as the (closed)
Lorentz cone. Define affine matrix-valued functions " and � by

"�x� =
(
x1 y�

y x1I

)
	 ��x� =

(
0 0 
 
 
 0

T12�y� T13�y� 
 
 
 Tq−2	q−1�y�

)
	

with Tij � �
q−1 → �q−1 for 1 ≤ i < j < q given by Tij�y�i = yj , Tij�y�j = −yi,

Tij�y�k = 0 for k �= i	 j. By applying a reflection, we may assume the state space � is
of the form � = �� ≥ 0� ∩ �x1 ≥ 0�. Analogously to Lemmas 5.3 and 5.4 we have
the following.

Lemma 5.13. Consider the linear space


 = {
a � �p → �q affine � (x1 −y�) a�x� = 0 for all x with x21 = y�y

}

 (5.17)

Then a basis for 
 is formed by the columns of " and �.

Proof. Similar to the proof of Lemma 5.3. �

Lemma 5.14. Consider the linear space

� = {
M � �p → �q×q affine �M�x� symmetric and Mi ∈ 
 for all x	 i

}
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with 
 defined by (5.17). Then a basis for � is given by

� = �"	 #�1�	 
 
 
 	 #�q − 1��	

with #�i� an affine symmetric-matrix valued function defined defined by its rows (with ek
the standard kth basis vector of �p)

#�i�1 � x 
→ (
yi 0

)
	

#�i�i+1 � x 
→ (
x1 y�

)
	

#�i�j � x 
→ −yie�j + yj−1e
�
i+1 for j �= 1	 i+ 1


Proof. Clearly the elements of � are linearly independent elements of �. It remains
to show that they span �.

Let M ∈ � be arbitrary. By Lemma 5.13 there exist matrices A and B such that

M�x� = "�x�A+ ��x�B


Write Q = �2	 
 
 
 	 q�, T�y� = �Tij�y��1≤i<j<q and B = (
B1 B̃

)
. Then the above

display reads

M�x� =
(

x1A11 + y�AQ1 x1A1Q + y�AQQ

yA11 + x1AQ1 + T�y�B1 yA1Q + x1AQQ + T�y�B̃

)
Symmetry of M�x� yields

A1Q = A�
Q1	

AQQ = A�
QQ	

yA11 + T�y�B1 = A�
QQy	

yA1Q + T�y�B̃ = �yA1Q + T�y�B̃��


Since y�T�y� = 0, the second equation together with the third gives

0 = y�T�y�B1 = y��AQQ − A11I�y	

which implies AQQ − A11I = 0, as AQQ − A11I is symmetric and thus diagonalizable
by an orthogonal matrix. Define

N = M − A11"−
∑
i∈Q

A1i#�i− 1�


Then N ∈ � and N is of the form

N�x� =
(
0 0
0
∑

k∈Q Ckyk

)
	

for some symmetric ��q − 1�× �q − 1��-matrices Ck. By Lemma 5.2, it follows that
N = 0. �
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Unlike the parabolic case, for a general Lorentz cone state space we are not able
to find a square root such that strong existence and uniqueness for the resulting SDE
can be proved (for showing existence and unqiueness of a weak solution though,
one can apply the results of [4, 22]). An exception is the two-dimensional cone, as
this is just a polyhedron which has already been covered in Section 4. The following
example shows that problems appear for closed Lorentz cones in higher dimensions.

Example 5.15. For p = q = 3, a basis for � is given by

"�x� =
x1 y1 y2
y1 x1 0
y2 0 x1

 	 #�1��x� =
y1 x1 0
x1 y1 y2
0 y2 −y1

 	

#�2��x� =
y2 0 x1
0 −y2 y1
x1 y1 y2

 


Note that not only " but also "+ #�1� and "+ #�2� are positive semi-definite on � =
�� ≥ 0� ∩ �x1 ≥ 0� = �x ∈ �3 � x1 ≥ 0	 x21 ≥ y�y�. The structure of these matrices
appears to be too complex to compute a manageable square root.

However, Proposition 3.7 enables us to derive sufficient conditions for
stochastic invariance of the open Lorentz cone �" > 0�. This can be used to show
existence of a unique strong solution for the affine SDE (2.1) with square root � =
�"�1/2, see the next theorem. Note that this approach is not applicable for "+ #�1�
and "+ #�2� in Example 5.15, as these matrices are singular on the whole of �3. We
leave the question of (strong) existence of an affine diffusion on a closed Lorentz
cone open for further research.

Theorem 5.16. There exists an affine SDE with drift ��x� = ax + b, diffusion matrix

��x� =
(
x1 y�

y x1I

)
	

and Lorentz cone state space � = �� > 0� = �x1 > �y�y�1/2� if

a1Q − a�
Q1 = 0 (5.18)

a11I− aQQ ≥ 0 (5.19)

b1 − 1
2p− �bQ� ≥ 0
 (5.20)

Proof. Let � = ���1/2. Then � is locally Lipschitz continuous on � , so strong
existence and uniqueness for (2.1) follows (see [17, Theorem 5.2.5]) as soon as we
have shown stochastic invariance of � . It holds that � is a connected component
of �� > 0�, with ��x� = x21 − y�y. Therefore, in view of Proposition 3.7, it suffices
to prove (3.9) and (3.10). The first condition is immediate. For the second one, a
calculation shows that ���x����x�− 1

2

∑p
i=1�A

i�i� equals

2
(
a11x

2
1 + x1�a1Q − a�

Q1�y +
(
b1 −

1
2
p

)
x1 − y�aQQy − b�Qy

)
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This is non negative for all x ∈ � if (5.18)–(5.20) hold and a11 ≥ 0. Indeed, in that
case we have for x ∈ � = �x21 > y�y� ∩ �x1 > 0� that

a11x
2
1 + x1�a1Q − a�

Q1�y +
(
b1 −

1
2
p

)
x1 − y�aQQy − b�Qy

≥ y��a11I− aQQ�y +
(
b1 −

1
2
p

)
x1 − �bQ	 y�

≥ y��a11I− aQQ�y +
(
b1 −

1
2
p− �bQ�

)
x1 ≥ 0	

since −�bQ	 y� ≥ −�bQ��y� ≥ −�bQ�x1 by Cauchy-Schwarz. The nonnegativity
of a11 can be dispensed with, by the same arguments as in the proof of
Proposition 5.11. �
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Appendix A. Convex Analysis

In this Appendix, we state and prove the results on convex analysis applied in
Section 4. Let � be given by (4.1) and in addition to an affine function u we are
given an affine function d by

d � �p → � � x 
→ ax + b	

for some a ∈ �1×p, b ∈ �. Proposition A.1 below is the main result, which yields
Proposition A.2 to tackle the drift and Proposition A.4 to tackle the diffusion matrix
of affine diffusions with non-canonical polyhedral state space.

Proposition A.1. Suppose � ⊂ �d ≥ 0�. Then there exist c ≥ 0 and � ∈ �1×q
≥0 , such

that

d = �u+ c


Proof. We give a proof by contradiction. Let


 = ����	 ��+ c� � � ∈ �1×q
≥0 	 c ≥ 0�


Suppose �a	 b� �∈ 
. Since 
 is a closed convex set, �a	 b� is strictly separated from

 by the Separating Hyperplane Theorem. Therefore, there exist y ∈ �p and y0 ∈ �
such that ��y	 y0�	 �k	 k0�� > ��y	 y0�	 �a	 b�� for all �k	 k0� ∈ 
, that is,

ky + k0y0 > ay + by0 for all �k	 k0� ∈ 



In other words, for all �i ≥ 0 and c ≥ 0 we have∑
i

�i��iy + �iy0�+ cy0 > ay + by0


It easily follows that

ay + by0 < 0 (A.1)

�iy + �iy0 ≥ 0 (A.2)

y0 ≥ 0
 (A.3)
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Using this we construct x ∈ � for which d�x� < 0. Suppose y0 > 0. Then we take
x = y/y0. Indeed, ui�x� = ��iy + �iy0�/y0 ≥ 0, so x ∈ � . But d�x� = �ay + by0�/y0 <
0, which is a contradiction. Suppose y0 = 0. Then we take an arbitrary x0 ∈ � and
let xN = x0 + Ny, with N ∈ �. Then ui�xN � = ui�x0�+ N�iy ≥ 0 for all N , so xN ∈ � ,
but d�xN � = d�x0�+ Nay < 0 for N big enough. �

Proposition A.2. Suppose ��i ⊂ �d ≥ 0� for some i ∈ Q. Then there exist c ≥ 0 and
� ∈ �1×q with �j ≥ 0 for j ∈ Q\�i�, such that

d = �u+ c


Proof. Let u0 �= −ui. Then ��i =
⋂q

j=0�uj ≥ 0� and d�x� ≥ 0 for x ∈ ��i. Hence we
can apply Proposition A.1, which gives the existence of �j ≥ 0 with j = 0	 
 
 
 	 q and
c ≥ 0 such that

d�x� =
q∑

j=0

�juj�x�+ c =
q∑

j=1

�̃juj�x�+ c	

with �̃j = �j ≥ 0 for j �= i and �̃i = �i − �0. �

Lemma A.3. Assume Q is minimal. It holds that ��i �= ∅ for all i ∈ Q.

Proof. Fix i ≤ q. By minimality of Q we can choose x ∈ �p such that ui�x� < 0 and
uj�x� ≥ 0 for all j �= i. Since � �= ∅, we can choose y ∈ � . Then uj�y� ≥ 0 for all j.
For t ∈ �0	 1� it holds that

uj�tx + �1− t�y� = tuj�x�+ �1− t�uj�y�	

which is non negative for j �= i. For t = ui�y�/�ui�y�− ui�x�� we have ui�tx + �1−
t�y� = 0, so tx + �1− t�y ∈ ��i. �

Proposition A.4. Assume Q is minimal. Suppose ��i ⊂ �d = 0� for some i ∈ Q. Then
there exists �i ∈ � such that v�x� = �iui�x� for x ∈ � . If �� �= ∅, then v�x� = �iui�x�
for all x ∈ �p.

Proof. We have ��i ⊂ �v ≥ 0� and ��i ⊂ �−v ≥ 0�. Applying Proposition A.2 with
d = v, respectively, d = −v, we derive that

v�x� =
q∑

j=1

�juj�x�+ c1

−v�x� =
q∑

j=1

�juj�x�+ c2	

for some �	 � ∈ �1×p with �j	 �j ≥ 0 for j �= i and c1	 c2 ≥ 0. Adding the equations
in the above display gives

0 =
q∑

j=1

��j + �j�uj�x�+ c1 + c2
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By Lemma A.3 we can choose x ∈ ��i and deduce that c1 = c2 = 0. So

−��i + �i�ui�x� =
∑
j �=i
��j + �j�uj�x�


By minimality of Q we can choose x ∈ �p such that ui�x� < 0 and uj�x� ≥ 0 for all
j �= i. This gives that c �= �i + �i ≥ 0. If c > 0, then for x ∈ � we have

0 ≤ ui�x� = −c−1
∑
j �=i
��j + �j�uj�x� ≤ 0	

when ui�x� = 0 for x ∈ � . So � = ��i ⊂ �v = 0� and v�x� = ui�x� = 0 for x ∈ � . If
c = 0, then

∑
j �=i��j + �j�uj�x� = 0 for all x. This holds in particular for x ∈ � , that

is, for x such that uj�x� ≥ 0 for all j. Hence, for x ∈ � we have �juj�x� = �juj�x� =
0 for all j �= i, so

v�x� =
q∑

j=1

�juj�x�+ c1 = �iui�x�	 (A.4)

for x ∈ � . If �� �= ∅, then choosing x ∈ �� gives uj�x� > 0 for all j, which implies
�j = 0 for all j �= i. Then (A.4) holds for all x ∈ �p. �


